Time-resolved spectroscopy

In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques. Most often, processes are studied that occur after illumination of a material, but in principle, the technique can be applied to any process that leads to a change in properties of a material. With the help of pulsed lasers, it is possible to study processes that occur on time scales as short as 10−14 seconds. The rest of the article discusses different types of time-resolved spectroscopy.

Contents

Transient-absorption spectroscopy

Transient-absorption spectroscopy is an extension of absorption spectroscopy. Here, the absorbance at a particular wavelength or range of wavelengths of a sample is measured as a function of time after excitation by a flash of light. In a typical experiment, both the light for excitation ('pump') and the light for measuring the absorbance ('probe') are generated by a pulsed laser. If the process under study is slow, then the time resolution can be obtained with a continuous (i.e., not pulsed) probe beam and repeated conventional spectrophotometric techniques.

Examples of processes that can be studied:

Other multiple-pulse techniques

Transient spectroscopy as discussed above is a technique that involves two pulses. There are many more techniques that employ two or more pulses, such as:

The interpretation of experimental data from these techniques is usually much more complicated than in transient-absorption spectroscopy.

Nuclear magnetic resonance and electron spin resonance are often implemented with multiple-pulse techniques, though with radio waves and micro waves instead of visible light.

Time-resolved infrared spectroscopy

Time-resolved infrared (TRIR) spectroscopy also employs a two-pulse, "pump-probe" methodology. The pump pulse is typically in the UV region and is often generated by a high-powered Nd:YAG laser, whereas the probe beam is in the infrared region. This technique currently operates down to the picosecond time regime and surpasses transient absorption and emission spectroscopy by providing structural information on the excited-state kinetics of both dark and emissive states.

Time-resolved fluorescence spectroscopy

Time-resolved fluorescence spectroscopy is an extension of fluorescence spectroscopy. Here, the fluorescence of a sample is monitored as a function of time after excitation by a flash of light. The time resolution can be obtained in a number of ways, depending on the required sensitivity and time resolution:

This technique uses convolution integral to calculate a lifetime from a fluorescence decay.